Testwiki:Képletleíró nyelv

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez

A MediaWiki TeX-jelölést használ a matematikai formulák leírásához. A felhasználó akaratától és a kifejezés komplexitásától függően a generált kód lehet PNG-kép vagy egyszerű HTML-szöveg. A jövőben, ha már sokkal okosabbak lesznek a böngészők, sok esetben lehetőség nyílhat akár MathML-formátum generálására is.

A matematikai kifejezéseket <math> ... </math> közé kell tenni. A sortörések kezelése intelligens, nem jelenítődik meg. Ez jól jöhet pl. a mátrixoknál (sorok), ahol a kódban is úgy szerkeszthetjük a kifejezést, ahogy az majdan megjelenik.

Bővebb információkat kapni, megjegyzéseket tenni, hibákat jelenteni a Wikitech-l levelezőlistán lehet.

Folyó szövegbe írt formulák esetén előfordulhat, hogy nem illeszkednek pontosan a szövegbe vagy a betűméretük eltér. Ha ez egy esetben nagyon zavaró, kerüljük a TeX jelölés használatát.


Az (elvileg) legfrissebb leírás elérhető a megfelelő Meta-Wiki-oldalon, itt: Help:Formula. Sablon:Tudnivalók-vége

Speciális karakterek

Mit? Hogyan? Milyen lesz?
Alapképletek (jó) \sin x + \ln y +\operatorname{sgn} z sinx+lny+sgnz
Alapképletek (rossz) sin x + ln y + sgn z sinx+lny+sgnz
Maradékosztályok s_k \equiv 0 \pmod{m} sk0(modm)
Deriváltak \nabla \ \partial x \ dx \ \dot x\ \ddot y  x dx x˙ y¨
Halmazok \forall \; \exists \; \empty \; \emptyset \; \varnothing \in \ni \not\in \notin \subset \subseteq \supset \supseteq
\cap \bigcap \cup \bigcup \biguplus
∉ ×D
Logika \lnot p \wedge \bar{q} \rightarrow p\vee \bar{q} \Rightarrow \Leftrightarrow \vdash \models ¬pq¯pq¯  
gyök \sqrt{2}\approx 1,4 21,4
\sqrt[n]{x} xn
Relációk \sim \simeq \cong \le \ge \equiv \approx \ne        
Geometria \angle \perp \|
Nyilak

\leftarrow \rightarrow \leftrightarrow
\longleftarrow \longrightarrow
\mapsto \longmapsto
\nearrow \searrow \swarrow \nwarrow
\uparrow \downarrow \updownarrow

             

\Leftarrow \Rightarrow \Leftrightarrow
\Longleftarrow \Longrightarrow \Longleftrightarrow
\Uparrow \Downarrow \Updownarrow

        

Speciális \oplus \otimes \pm \mp \hbar \dagger \ddagger \star * \circ \cdot \times \bullet \infty ±*

× 

Még spécibb mathcal paranccsal \mathcal{0123456789} \mathcal{abcdefghijklmnopqrstuvxyz} 0123456789 𝒶𝒷𝒸𝒹𝒻𝒽𝒾𝒿𝓀𝓁𝓂𝓃𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓍𝓎𝓏

Alsó- és felsőindexek

Mit? Hogyan? Milyen lesz?
felsőindex a^2 a2
alsóindex a_2 a2
csoportosítás a^{2+2} a2+2
a_{i,j} ai,j
felső és alsó kombináció x_2^3 x23
balindexek is vannak: {}_1^2\!X_3^4 12X34
derivált (jó) x' x
derivált (rossz HTML-ben) x^\prime x
derivált (rossz PNG-ben) x\prime x
newtoni időszerinti deriváltak \dot{x}, \ddot{x} x˙,x¨
Szumma \sum_{k=1}^N k^2 k=1Nk2
Szorzat (Produktum) \prod_{i=1}^N x_i i=1Nxi
Határérték \lim_{n \to \infty}x_n limnxn
integrál \int_{-N}^{N} e^x\, dx NNexdx
lineáris integrál \oint_{C} x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
halmazrendszer metszete \bigcap_1^{n} p

1np

halmazrendszer uniója \bigcup_1^{k} p

1kp

Törtek, mátrixok, többsoros kifejezések

Figyelem! Programhiba miatt az e szakaszban leírt funkciók némelyike nem működik!

Mit? Hogyan? Milyen lesz?
törtek \frac{1}{2} vagy {2 \over 4} 12=24
binomiális együttható {n \choose k} (nk)
mátrixok \begin{pmatrix} x & y \\ z & v \end{pmatrix} (xyzv)
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots &

\ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix}

[0000]
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} {xyzv}
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |xyzv|
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} xyzv
\begin{matrix} x & y \\ z & v \end{matrix} xyzv
esetek szétválasztása a^{p-1} \equiv \begin{cases} 0, & \mbox{ha }p|a; \\

1, & \mbox{ha }\left(p,a\right)=1 \end{cases}

ap1{0,ha p|a;1,ha (p,a)=1
többsoros egyenletek \begin{matrix}f(n+1)&=& (n+1)^2 \\ \ &

=& n^2 + 2n + 1\end{matrix}

f(n+1)=(n+1)2 =n2+2n+1

Betűtípusok

Mit? Hogyan? Milyen lesz?
Görög kisbetűk \alpha \beta \gamma \rho \xi \phi \psi αβγρξϕψ
Görög kisbetűk változatai \varrho \varpi \varphi \vartheta \varsigma \varepsilon ϱϖφϑςε
Görög nagybetűk \Alpha \Phi \Psi \Xi \Omega A Φ Ψ Ξ Ω
Duplaszárú betűk x\in\mathbb{R}\sub\mathbb{C} x
félkövér (vektorok) \mathbf{x}\cdot\mathbf{y} = 0 𝐱𝐲=0
félkövér (görög) \boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma} α+β+γ
aláhúzott \underline{xy} xy_
Gót betűk (fraktúrák) \mathfrak{a} \mathfrak{B} 𝔞𝔅
Írott betűk (kalligráfia/ szkript) \mathcal{ABC} (csak nagybetűk!) 𝒜𝒞
Héber (csak 4 használható) \aleph \beth \gimel \daleth    
nem-döntött karakterek \mbox{abc} abc
nem-döntött karakterek \mathrm{abc} abc

Kifejezések zárójelezése

Jobb-bal méretezés

Mit? Hogyan? Milyen lesz?
nem jó ( \frac{1}{2} ) (12)
jobb \left( \frac{1}{2} \right) (12)

Zárójeltípusok


Többféle zárójel karakter használható a \left-tel és \right-tal:

Mit? Hogyan? Milyen lesz?
zárójel \left( A \right) (A)
szögletes zárójel \left[ A \right] [A]
kapcsos zárójel \left\{ A \right\} {A}
csúcsos zárójel \left\langle A \right\rangle A
egyenes zárójel \left| A \right| |A|
u.az \vert A \vert |A|
dupla egyenes zárójel \| A \| A
u.az
(normajel)
\left \Vert \frac{c}{d} \right \|  cd
u.az \Vert A \Vert A
alsó és felső egészrész: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil abcd
Slash és backslash \left / \frac{a}{b} \right \backslash /ab\
Fel, le, felle- és lefel-nyilak \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow ababab

Zárójelkombinálás
(minden \left-nek legyen \right párja)

\left [ 0,1 \right )
\left \langle \psi \right |

[0,1)
ψ|

Féloldali zárójelekhez használd a
\left. és \right. parancsot
\left . \frac{A}{B} \right \} \to X AB}X
Zárójelméretezés: szuper-mega-giga zárójelek \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

((((...]]]]

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

{{{{...

\Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| ...||||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

...

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

...

Szóközök

A TeX automatikusan kezeli a szóközöket, de ha szükség van kézi beállításra, akkor a következőket lehet használni:

Mit? Hogyan? Milyen lesz?
nyolcszoros köz a \qquad b ab
négyszeres köz a \quad b ab
szövegszerű köz a\ b a b
nagy köz a\;b ab
közepes köz a\>b [nem alkalmazható]
kis köz a\,b ab
nincs köz ab ab
negatív köz a\!b ab

PNG kényszerítése

Kikényszerítheted, hogy a formula PNG formában jelenjen meg, ha a végére egy \, jelet teszel. (Olyan helyre kell tenned, ahol a fordító nem tudja az előző szakaszban leírt módon értelmezni. Ha közvetlenül két karakter közé teszed, akkor helyközként viselkedik, és nem változtat a formula megjelenítésén.) Ilyenkor a formula mindenkinek PNG-ként jelenik meg, kivéve azokat, akik a Beállításoknál a "Képletek megjelenítése" opciót "HTML ha lehetséges"-re állították. Ha azt akarod, hogy nekik is kép formájában jelenjen meg, akkor a \, \! jelet használd. (Ezt már bárhova elhelyezheted.)

Ezzel a módszerrel elkerülheted, hogy egy formula egyes részei HTML-ként, más részei pedig PNG-ként (azaz más méretben és betűtípussal) jelenjenek meg, ami meglehetősen csúnyán néz ki.

Néhány példa:

Jelölés Így fog kinézni
a^{2+2} a2+2
a^{2+2} \, a2+2
a^{\,\!2+2} a2+2
\int_{-N}^{N} e^x\, dx NNexdx
\int_{-N}^{N} e^x\, dx \, NNexdx
\int_{-N}^{N} e^x\, dx \,\! NNexdx

Ilyenkor nem árt elrejteni egy megjegyzést a szövegben, hogy az utánad jövők ne próbálják meg tévedésből "kijavítani" a formulát:

<!-- A \,\! azért kell, hogy a formula ne HTML, hanem PNG formában jelenjen meg. Ne töröld ki! -->
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} a´a`a^a~a˘
\check{a} \bar{a} \ddot{a} \dot{a} aˇa¯a¨a˙
\sin a \cos b \tan c sinacosbtanc
\sec d \csc e \cot f secdcscecotf
\arcsin h \arccos i \arctan j arcsinharccosiarctanj
\sinh k \cosh l \tanh m \coth n sinhkcoshltanhmcothn
\operatorname{sh}o\,\operatorname{ch}p\,\operatorname{th}q shochpthq
\operatorname{arsinh}r\,\operatorname{arcosh}s\,\operatorname{artanh}t arsinhrarcoshsartanht
\lim u \limsup v \liminf w \min x \max y limulim supvlim infwminxmaxy
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g infzsupaexpblnclgdlogelog10fkerg
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n deghgcdiPrjdetkhomlargmdimn
s_k \equiv 0 \pmod{m} sk0(modm)
a\,\bmod\,b amodb
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} xdxx˙y¨dy/dxdydx2yx1x2
\forall \exists \empty \emptyset \varnothing
\in \ni \not \in \notin \subset \subseteq \supset \supseteq ∉
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
+ \oplus \bigoplus \pm \mp - +±
\times \otimes \bigotimes \cdot \circ \bullet \bigodot ×
\star * / \div \frac{1}{2} */÷12
\land (or \and) \wedge \bigwedge \bar{q} \to p q¯p
\lor \vee \bigvee \lnot \neg q \And ¬¬q&
\sqrt{2} \sqrt[n]{x} 2xn
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} =˙=def
< \le \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto <>≢or
\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ 45
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow (or \impliedby) \Longrightarrow (or \implies) \Longleftrightarrow (or \iff)
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
\And \eth \S \P \% \dagger \ddagger \ldots \cdots \colon &ð§%:
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar ı
\ell \mho \Finv \Re \Im \wp \complement
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown 𝕜
\square \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
\subsetneq
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus ȷ
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq ⨿
\dashv \asymp \doteq \parallel
\ulcorner \urcorner \llcorner \lrcorner
\Coppa\coppa\varcoppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma ϘϙϙϜϞϟϠϡϚϛϛ
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta ABΓΔEZ
\Eta \Theta \Iota \Kappa \Lambda \Mu HΘIKΛM
\Nu \Xi \Omicron \Pi \Rho \Sigma \Tau NΞOΠPΣT
\Upsilon \Phi \Chi \Psi \Omega ΥΦXΨΩ
\alpha \beta \gamma \delta \epsilon \zeta αβγδϵζ
\eta \theta \iota \kappa \lambda \mu ηθικλμ
\nu \xi \omicron \pi \rho \sigma \tau νξπoρστ
\upsilon \phi \chi \psi \omega υϕχψω
\varepsilon \digamma \vartheta \varkappa εϝϑϰ
\varpi \varrho \varsigma \varphi ϖϱςφ
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} 𝔸𝔹𝔻𝔼𝔽𝔾
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} 𝕀𝕁𝕂𝕃𝕄
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} 𝕆𝕊𝕋
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} 𝕌𝕍𝕎𝕏𝕐
\C \N \Q \R \Z
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} 𝐀𝐁𝐂𝐃𝐄𝐅𝐆
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} 𝐇𝐈𝐉𝐊𝐋𝐌
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} 𝐍𝐎𝐏𝐐𝐑𝐒𝐓
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} 𝐔𝐕𝐖𝐗𝐘𝐙
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} 𝐚𝐛𝐜𝐝𝐞𝐟𝐠
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} 𝐡𝐢𝐣𝐤𝐥𝐦
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} 𝐧𝐨𝐩𝐪𝐫𝐬𝐭
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} 𝐮𝐯𝐰𝐱𝐲𝐳
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} 𝟎𝟏𝟐𝟑𝟒
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} 𝟓𝟔𝟕𝟖𝟗
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} ABΓΔEZ
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} HΘIKΛM
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} NΞΠPΣT
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} ΥΦXΨΩ
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} αβγδϵζ
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} ηθικλμ
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} νξπρστ
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} υϕχψω
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} εϝϑϰ
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} ϖϱςφ
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} 𝐴𝐵𝐶𝐷𝐸𝐹𝐺
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} 𝐻𝐼𝐽𝐾𝐿𝑀
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} 𝑁𝑂𝑃𝑄𝑅𝑆𝑇
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} 𝑈𝑉𝑊𝑋𝑌𝑍
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} 𝑎𝑏𝑐𝑑𝑒𝑓𝑔
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} 𝑖𝑗𝑘𝑙𝑚
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} 𝑛𝑜𝑝𝑞𝑟𝑠𝑡
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} 𝑢𝑣𝑤𝑥𝑦𝑧
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} 01234
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} 56789
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} ABCDEFG
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} HIJKLM
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} NOPQRST
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} UVWXYZ
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} abcdefg
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} hijklm
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} nopqrst
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} uvwxyz
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} 01234
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} 56789
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} 𝔄𝔅𝔇𝔈𝔉𝔊
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} 𝔍𝔎𝔏𝔐
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} 𝔑𝔒𝔓𝔔𝔖𝔗
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} 𝔘𝔙𝔚𝔛𝔜
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} 𝔞𝔟𝔠𝔡𝔢𝔣𝔤
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} 𝔥𝔦𝔧𝔨𝔩𝔪
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} 𝔫𝔬𝔭𝔮𝔯𝔰𝔱
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} 𝔲𝔳𝔴𝔵𝔶𝔷
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} 01234
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} 56789
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} 𝒜𝒞𝒟𝒢
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} 𝒥𝒦
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} 𝒩𝒪𝒫𝒬𝒮𝒯
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} 𝒰𝒱𝒲𝒳𝒴𝒵
Hebrew
\aleph \beth \gimel \daleth



Superscript a^2 a2
Subscript a_2 a2
Grouping a^{2+2} a2+2
a_{i,j} ai,j
Combining sub & super without and with horizontal separation x_2^3 x23
{x_2}^3 x23
Super super 10^{10^{8}} 10108
Preceding and/or Additional sub & super _nP_k nPk
\sideset{_1^2}{_3^4}\prod_a^b 3412ab
{}_1^2\!\Omega_3^4 12Ω34
Stacking \overset{\alpha}{\omega} ωα
\underset{\alpha}{\omega} ωα
\overset{\alpha}{\underset{\gamma}{\omega}} ωγα
\stackrel{\alpha}{\omega} ωα
Derivatives x', y'', f', f'' x,y,f,f
x^\prime, y^{\prime\prime} x,y
Derivative dots \dot{x}, \ddot{x} x˙,x¨
Underlines, overlines, vectors \hat a \ \bar b \ \vec c a^ b¯ c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} ab cd def^
\overline{g h i} \ \underline{j k l} ghi jkl_
\not 1 \ \cancel{123} 1 123
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C An+μ1BTn±i1C
Overbraces \overbrace{ 1+2+\cdots+100 }^{\text{sum}\,=\,5050} 1+2++100sum=5050
Underbraces \underbrace{ a+b+\cdots+z }_{26\text{ terms}} a+b++z26 terms
Sum \sum_{k=1}^N k^2 k=1Nk2
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 k=1Nk2
Product \prod_{i=1}^N x_i i=1Nxi
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i i=1Nxi
Coproduct \coprod_{i=1}^N x_i i=1Nxi
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i i=1Nxi
Limit \lim_{n \to \infty}x_n limnxn
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n limnxn
Integral \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integral (alternate limits style) \int_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx NNexdx
Integral (force \textstyle, alternate limits style) \textstyle \int_{-N}^{N} e^x\, dx NNexdx
Double integral \iint\limits_D \, dx\,dy Ddxdy
Triple integral \iiint\limits_E \, dx\,dy\,dz Edxdydz
Quadruple integral \iiiint\limits_F \, dx\,dy\,dz\,dt Fdxdydzdt
Line or path integral \int_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
Closed line or path integral \oint_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
Intersections \bigcap_1^n p 1np
Unions \bigcup_1^k p 1kp

Fractions

\frac{1}{2}=0.5 12=0.5

Small ("text style") fractions

\tfrac{1}{2} = 0.5 12=0.5

Large ("display style") fractions

\dfrac{k}{k-1} = 0.5 kk1=0.5

Mixture of large and small fractions

\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n 12[1(12)n]112=sn

Continued fractions (note the difference in formatting)

\cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a
\qquad
\dfrac{2}{ c + \dfrac{2}{ d + \dfrac{1}{2} } } = a
2c+2d+12=a2c+2d+12=a

Binomial coefficients

\binom{n}{k} (nk)

Small ("text style") binomial coefficients

\tbinom{n}{k} (nk)

Large ("display style") binomial coefficients

\dbinom{n}{k} (nk)

Matrices

\begin{matrix}
x & y \\
z & v 
\end{matrix}
xyzv
\begin{vmatrix}
x & y \\
z & v 
\end{vmatrix}
|xyzv|
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
xyzv
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\ 
0      & \cdots & 0
\end{bmatrix}
[0000]
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
{xyzv}
\begin{pmatrix}
x & y \\
z & v 
\end{pmatrix}
(xyzv)
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
(abcd)

Arrays

\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0
\end{array}
abS001011101110

Cases

f(n) = 
\begin{cases} 
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n)={n/2,if n is even3n+1,if n is odd

System of equations

\begin{cases}
3x + 5y +  z &= 1 \\
7x - 2y + 4z &= 2 \\
-6x + 3y + 2z &= 3
\end{cases}
{3x+5y+z=17x2y+4z=26x+3y+2z=3

Breaking up a long expression so it wraps when necessary

<math>f(x) = \sum_{n=0}^\infty a_n x^n</math>
<math>= a_0 + a_1x + a_2x^2 + \cdots</math>
f(x)=n=0anxn =a0+a1x+a2x2+

Multiline equations

\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2
\end{align}
f(x)=(a+b)2=a2+2ab+b2
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2
\end{alignat}
f(x)=(ab)2=a22ab+b2

Multiline equations with aligment specified (left, center, right)

\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z  
\end{array}
z=af(x,y,z)=x+y+z
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z     
\end{array}
z=af(x,y,z)=x+y+z

Bad

( \frac{1}{2} ) (12)

Good

\left ( \frac{1}{2} \right ) (12)

Parentheses

\left ( \frac{a}{b} \right ) (ab)

Brackets

\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack [ab][ab]

Braces (note the backslash before the braces in the code)

\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace {ab}{ab}
Angle brackets \left \langle \frac{a}{b} \right \rangle ab
Bars and double bars (note: "bars" provide the absolute value function) \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| |ab|cd
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil abcd
Slashes and backslashes \left / \frac{a}{b} \right \backslash /ab\
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow ababab
Delimiters can be mixed, as long as \left and \right are both used \left [ 0,1 \right )
\left \langle \psi \right |
[0,1)
ψ|
Use \left. or \right. if you don't want a delimiter to appear: \left . \frac{A}{B} \right \} \to X AB}X
Size of the delimiters \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big] ((((]]]]
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle {{{{
\big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\| ||||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash ////\\\\
non-italicised characters \mbox{abc} abc
mixed italics (bad) \mbox{if} n \mbox{is even} ifnis even
mixed italics (good) \mbox{if }n\mbox{ is even} if n is even
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} ifn is even