Standard deviation distribution

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez

Sablon:Engfn

  1. Sablon:Matematika Sample standard deviation and its properties in the context of a normal distribution. Here’s a breakdown of the key points and equations you’ve provided:

Sample Standard Deviation

The sample standard deviation s is calculated using the formula:

s=1Ni=1N(xix¯)2

where: - N is the number of samples, - xi are the individual sample values, - x¯ is the sample mean.

Distribution of s

The distribution of the sample standard deviation s for a normal population is given by:

fN(s)=2(N2σ2)(N1)/21Γ(12(N1))eNs22σ2sN2

where: - σ2 is the population variance, - Γ(z) is the gamma function.

Mean of s

The mean of the sample standard deviation is:

s=b(N)σ

where b(N) is given by:

b(N)=2NΓ(N/2)Γ((N1)/2)

Approximation for b(N)

Romanovsky provided an asymptotic expansion for b(N):

b(N)=134N732N29128N3+

Raw Moments

The r-th raw moments of s are given by:

μr=(2N)r/2Γ(N1+r2)Γ(N12)σr

Variance of s

The variance of s can be expressed as:

var(s)=μ2μ2=1N[N12Γ2(N/2)Γ2((N1)/2)]σ2

Unbiased Estimator

Finally, the term sb(N) serves as an unbiased estimator of the population standard deviation σ.


Sablon:Engl