Gamma-függvény

Innen: testwiki
A lap korábbi változatát látod, amilyen imported>LinguisticMystic 2024. október 7., 11:15-kor történt szerkesztése után volt.
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Ugrás a navigációhoz Ugrás a kereséshez

Sablon:Hunfn

  1. Sablon:Label A Γ-függvény (gamma-függvény) a következő képlettel definiált komplex változós függvény:
Γ(s):=0ts1et dt.

Mivel az et nagyon gyorsan 0-hoz tart, az integrál minden valós s > 0-ra sőt minden pozitív valós részű komplex s esetén létezik. Parciális integrálással adódik, hogy ha s valós része 1-nél nagyobb, akkor

Γ(s)=(s1)Γ(s1)

is teljesül. Emiatt a tulajdonsága miatt teljesül rá hogy ha n pozitív egész, akkor Γ(n) = (n − 1)!, azaz a gamma-függvény tekinthető a faktoriális művelet általánosításának −1 feletti valós számokra.

A faktoriálisnak léteznek más általánosításai is, de ez a legnépszerűbb és a legtöbb területen használt. A gamma-függvényt gyakran alkalmazzák a valószínűségszámítás területén, az analitikus számelméletben, s a Taylor-sorok elméletében és gyakorlatában is igen hasznos könnyítéseket lehet vele tenni. A gamma-függvény segítségével definiálható a béta-függvény és számos fontos valószínűség-eloszlás, például a gamma-eloszlás, a χ²-eloszlás, a Student-féle t-eloszlás (t-eloszlás) és az F-eloszlás. Sablon:Hunl